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Abstract. In this paper we introduce some new conditions of the solu-

tions existence for variational-like inequalities with relaxed η − α pseu-

domonotone mappings in Banach spaces. The advantage of these new

conditions is that they are easier to be verified than those that appear in

some of the previous corresponding articles.
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1. Introduction

Variational inequalities problems play a critical role in many fields and just
because of this ability, they have been generalized in various directions by
several authors. Monotonicity as a powerful weapon in almost all of these
researches project has a notable position and during the recent years many
generalization of monotonicity have been introduced to study various classes
of variational inequalities. Briefly, a historical order of these researches are:
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Chen [2] who introduced the concept of semimonotonicity and applied it in
the semimonotone scalar variational inequalities in Banach space, Fang and
Huang [4] who introduced a new concept of relaxed η − α monotonicity and
obtained some existence theorems of solutions for variational-like inequalities
with relaxed η − α monotone mappings in reflexive Banach spaces, Bai, Zhou
and Ni [1] who introduced a new concept of relaxed η−α pseudomonotone and
obtained some existence of the solutions for variational-like inequalities with
relaxed η − α pseudomonotone mappings in reflexive Banach spaces and very
recently the works of Wu and Huang [6] who introduced the new concepts of
relaxed η − α pseudomonotone and demipseudomonotone mappings and ob-
tained some existence results for solutions of vector variational-like inequalities
with relaxed η − α pseudomonotone and demipseudomonotone mappings by
means of KKM technique and Glicksberg fixed point theorem in reflexive Ba-
nach spaces. In this paper we try to replace some conditions of the works of Wu
and Huang [6] with some new conditions. It is claimed that these conditions
are checked somewhat easier in practice than those that appear in the former
works.

Consider a Banach space X and a pointed convex closed cone P with intP 6=
∅, where intP is the interior of P . We now define

x > y ⇐⇒ x− y ∈ P
x � y ⇐⇒ x− y /∈ P
x > y ⇐⇒ x− y ∈ intP
x ≯ y ⇐⇒ x− y /∈ intP.

Throughout this section, unless otherwise specified, suppose that K is a
nonempty closed convex subset of X. Let D be a Banach space induced by the
convex closed cone P such that (D,6) is an ordered Banach space. Denote the
space of all bounded linear operators from X to D by L(X,D).

Definition 1.1. See Ref.[6] A mapping T : K → L(X,D) is said to be relaxed
η − α pseudomonotone if there exist the mappings η : K × K → X and
α : X → D with α(tz) = tpα(z) for all t > 0 and z ∈ X such that

(1) 〈Ty, η(x, y)〉 ≮ 0 =⇒ 〈Tx, η(x, y)〉 > α(x− y)

where p > 1 is a constant.

Definition 1.2. See Ref.[6] Let T : K → L(X,D) and η : K ×K → X be two
mappings. T is said to be η-hemicontinuous if, for any x, y ∈ K the mapping

t 7→ 〈T (x+ t(y − x)), η(y, x)〉

is continuous at 0+.
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Definition 1.3. See Ref.[6] A mapping T : K → D is said to be completely
continuous if, for any net {xλ} ∈ K, xλ ⇀ x0(weakly convergence), then
Txλ → Tx0 in norm.

Definition 1.4. See [6] A mapping G : X → 2X is said to be a KKM mapping
if, for any finite set B ⊂ X, coB ⊂

⋃
x∈B G(x), where 2X denotes the family

of the all nonempty subsets of X and coB is the convex hull B.

Lemma 1.1. ([5]) Let B be a nonempty subset of a topological vector space X
and G : B → 2X be a KKM mapping. If G(x) is closed in X for every x ∈ B
and compact for some x ∈ B, then

⋂
x∈B G(x) 6= ∅.

Lemma 1.2. ([3]) Let (D,6) be an ordered Banach space induced by the
pointed closed convex cone P with intP 6= ∅. For any a, b, c ∈ D, the fol-
lowing hold:

(i) c ≮ a > b implies b ≯ c;
(ii) c ≯ a 6 b implies b ≮ c.

Lemma 1.3. ([6]) Let T : K → L(X,D) be η−hemicontinuous and η − α

pseudomonotone. Suppose that

(i) η(x, x) = 0, for all x ∈ K;
(ii) for any fixed y, z ∈ K, the mapping x 7→ 〈Tz, η(x, y)〉 is convex.

Then the following problems are equivalent:

(a) x ∈ K, 〈Tx, η(y, x)〉 ≮ 0,∀y ∈ K;
(b) x ∈ K, 〈Ty, η(y, x)〉 > α(y − x),∀y ∈ K.

2. Vector variational-like inequalities with

relaxed η − α pseudomonotone mappings

In this section, we suppose that K is a nonempty closed convex subset of a
real reflexive Banach space X and (D,6) is an ordered Banach space induced
by the pointed closed convex cone P with intP 6= ∅ . Denote by L(X,D) the
space of all the continuous linear mappings from X to D . We will discuss
the existence of solutions for the vector variational-like inequality with relaxed
η − α pseudomonotone mappings.

Theorem 2.1. Let K be a nonempty bounded closed convex subset of a real
reflexive Banach space X. Let T : K → L(X,D) be η-hemicontinuous and
relaxed η − α pseudomonotone. Suppose that

(i) η(x, x) = 0, ∀x ∈ K;
(ii) for any given points y, z ∈ K, the mapping x 7→ 〈Tz, η(x, y)〉 be convex

and the mapping x 7→ 〈Ty, η(y, x)〉−α(y−x) be continuous and concave;
(iii) α : X → D is continuous.
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Then the following problem is solvable: find x ∈ K such that

(2) 〈Tx, η(y, x)〉 ≮ 0 ∀y ∈ K.

Proof. Let F,G : K → 2X be two set-valued mappings defined by:

F (y) = {x ∈ K : 〈Tx, η(y, x)〉 ≮ 0},∀y ∈ K;

and

G(y) = {x ∈ K : 〈Ty, η(y, x)〉 > α(y − x)},∀y ∈ K,

respectively. We claim that F is a KKM mapping. Indeed, if F is not a KKM
mapping, then there exists {y1, . . . , yn} ⊂ K and ti > 0, i = 1, . . . , n with∑n
i=1 ti = 1 such that

y =
n∑
i=1

tiyi /∈
n⋃
i=1

F (yi).

By definition of F , we must have

(3) 〈Ty, η(yi, y)〉 < 0, i = 1, . . . , n.

Equation (3) together with condition (ii) yield

0 = 〈Ty, η(y, y)〉

= 〈Ty, η(
n∑
i=1

tiyi, y)〉

6
n∑
i=1

ti〈Ty, η(yi, y)〉

< 0,

which is a clear contradiction. This guarantees that F is a KKM mapping.
Easily we can deduce that F (y) ⊂ G(y), for all y ∈ K. So G(.) is a KKM
mapping as well. By the reflexivity of the space and the assumptions that K
is bounded, closed and convex we deduce that K is weakly compact. Now let
for any given points y, z ∈ K, ξy,z : X → D be a mapping defined by

ξy,z(x) = 〈Tz, η(y, x)〉 − α(y − x).

Based on hypothesis we may deduce that ξy,y(.) is a continuous mapping, for
each y ∈ K. So for each y ∈ K, ξ−1

y,y(P ) is a closed subset of X. On the
other hand we have G(y) = ξ−1

y,y(P ),∀y ∈ K which proves that G(y) is closed
for each y ∈ K. Let x, z be two points in G(y) for an arbitrary y ∈ K and
0 6 t 6 1 be a real number. It follows that ξy,y(x) and ξy,y(z) lie both in P

and hence tξy,y(x) + (1 − t)ξy,y(z) lies in P . By condition (ii) it follows that
the mapping ξy,y is concave. Hence ξy,y(tx + (1 − t)z) ∈ P . In other words
tx + (1 − t)z ∈ ξ−1

y,y(P ). This implies that G(y) is convex. So G(y) is weakly



On the Vector Variational-like Inequalities with Relaxed ... 41

closed for each y ∈ K. Easily we can deduce that G(y) is bounded and hence is
weakly compact, for each y ∈ K. It follows from Lemmas (1.1) and (1.3) that⋂

y∈K
F (y) =

⋂
y∈K

G(y) 6= ∅.

This implies that there exists x ∈ K such that

〈Tx, η(y, x)〉 ≮ 0, ∀y ∈ K.

This completes the proof. 2

Remark 2.1. Comparing the above theorem with Theorem (2.1) in Ref. [6],
we see that the strong condition completely continuity of the mappings α and
x 7→ 〈Tz, η(y, x)〉 has been removed.

We now have the following theorem in the case that K is not necessary a
bounded subset of X.

Theorem 2.2. Let T : K → L(X,D) be η-hemicontinuous and relaxed η − α
pseudomonotone. Assume that K is a unbounded subset of X. Suppose that

(i) there exist a constant r > 0 and y0 ∈ K with ‖y0‖ = r such that

〈Tz, η(x, y0)〉 > 0, ∀z ∈ K with‖z‖ = r;

(ii) η(x, y) + η(y, x) = 0, ∀x, y ∈ K;
(iii) for any given point y, z ∈ K, the mapping x 7→ 〈Ty, η(x, y)〉 is contin-

uous as well as the mapping x 7→ 〈Tz, η(y, x)〉 − α(y − x) is concave;
(iv) α : X → D is concave and continuous.

Then the problem (2) is solvable.

Proof. First, we claim that for any given y, z ∈ K the mapping x 7→ 〈Tz, η(x, y)〉
is convex. In fact by condition (iii), the mapping x 7→ 〈Tz, η(y, x)〉 − α(y − x)
is concave, for any z, y ∈ K. Thus for every x, u ∈ K and 0 6 t 6 1:

〈Tz, η(y, tx+ (1− t)u)〉 − α(y − (tx+ (1− t)u)) >

t[〈Tz, η(y, x)〉 − α(y − x)] + (1− t)[〈Tz, η(y, u)〉 − α(y − u)].

Letting y = ty + (1− t)y and applying it in the above formula gives

〈Tz, η(y, tx+ (1− t)u)〉 − α(t(y − x) + (1− t)(y − u)) >

t〈Tz, η(y, x)〉 − tα(y − x) + (1− t)〈Tz, η(y, u)〉 − (1− t)α(y − u)].

Thus

〈Tz, η(y, tx+ (1− t)u)〉 − {t〈Tz, η(y, x)〉+ (1− t)〈Tz, η(y, u)〉} >

α(t(y − x) + (1− t)(y − u))− {tα(y − x) + (1− t)α(y − u)}

Based on condition (iv), the right-hand side of the inequality above is greater
than the zero and so the left-hand side must be positive which proves our
assertion above.
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Let Kr = {z ∈ K : ‖z‖ 6 r}. It follows from Theorem (2.1) that there exists
x ∈ Kr such that

(4) 〈Tx, η(y, x)〉 ≮ 0, ∀y ∈ Kr.

Letting y = y0 in (4), it follows that

〈Tx, η(y0, x)〉 ≮ 0.

So, by condition (ii)

(5) 〈Tx, η(x, y0)〉 ≯ 0.

Combining (5) and condition (i), it follows that ‖x‖ < r. Let y ∈ K be any
given. We can choose t > 0 small enough such that x + t(y − x) ∈ Kr. It
follows from (4) and condition (iii) that

(6) (1− t)〈Tx, η(x, x)〉+ t〈Tx, η(y, x)〉 > 〈Tx, η(x+ t(y − x), x)〉 ≮ 0.

The equation (6) together with Lemma (1.2) yield the result. 2
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